Forthcoming Special Issue : “Covalent to Ionic Behaviour of Cadmium Doped PbO-B2O3 Glasses”

csmAbstract: Spectroscopic studies in the past have exposed that PbO-B2O3 glasses are mostly classified as non-crystalline materials. These glasses prove to good host for incorporating RE (rare earth) and transition metal oxides due to its low phonon energy, large ion Polarizability and higher covalency. TM’s are widely used in the glass due to their two or more valence states. These states affect optical as well as structural properties. Due to commercial importance, B2O3 is good glass former. It is frequently used as a dielectric material. The transition metals incorporated borate glasses have great importance in the field of luminescent solar energy concentrators, gamma ray shielding materials, opto-acoustical electronics, solid state lasers, optical fibres, UV filters and ultrasonic devices in nonlinear devices for frequency conversion in the ultraviolet region and piezoelectric actuator. In transition metals cadmium oxide incorporated glasses has great importance because it can act both as network former and network modifier. Another important factor of cadmium glass is low electrical resistivity, wide band gap and high transmission in the visible region. It has different applications such as photo transistors, diodes, transparent electrodes, solar cells and gas sensors.

Read more here: http://benthamscience.com/journals/current-smart-materials/article/142841/

Published by

Bentham Science Publishers

A major STM journal publisher of more than 100 online and print journals and related print/online book series, Bentham Science answers the information needs of scientists in the fields of pharmaceutical, biomedical, medical, engineering, technology, computer and social sciences.

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s