Testimonial By Arshad H. Rahmani

Read what our Authors have to say about publishing in our Journal

arshad h rahmani

Journal Name: Anti-Cancer Agents in Medicinal Chemistry

 

Contributed Article: Garlic and its Active Compounds: A Potential Candidate in The Prevention of Cancer by Modulating Various Cell Signalling Pathways

Press Release | Endothelial regenerative capacity and aging: Influence of diet, exercise and obesity

The endothelium plays an important role in cardiovascular regulation, from blood flow to platelet aggregation, immune cell infiltration and demargination. Endothelium dysfunction inevitably leads to the onset and progression of cardiovascular disease (CVD). The aging endothelium displays significant changes in function, such as reduced vasomotor functions and reduced angiogenic capabilities. This may be partially due to increased levels of oxidative stress and reduced endothelial cell turnover.

Endothelial Progenitor Cells (EPCs) are circulating angiogenic cells which play an important role in maintaining endothelial health and function. EPCs maintain endothelial health and function by supporting cell proliferation or by incorporation into vasculature and differentiation into mature endothelial cells. However, EPCs are reduced in number with age, and this reduction may also contribute to elevated CVD risk in aging populations. Lifestyle factors such as exercise, physical activity obesity, and dietary intake of omega-3 polyunsaturated fatty acids, nitrates, and antioxidants, greatly influences the number and function of these circulating angiogenic cells. Read full press release to find out more at: https://www.eurekalert.org/pub_releases/2018-12/bsp-erc122718.php

 

189329_webThis review will discuss the effects of advancing age on endothelial health and vascular regenerative capacity, as well as the influence of diet, exercise, and obesity on these cells, the mechanistic links and the subsequent impact on cardiovascular health.

 

This article by Dr. Mark D. Ross is published in Current Cardiology Reviews, Volume 14, Issue 4, 2018. To obtain the article, please visit: http://www.eurekaselect.com/164045

OPEN ACCESS ARTICLE – Moving to the Rhythm with Clock (Circadian) Genes, Autophagy, mTOR, and SIRT1 in Degenerative Disease and Cancer – Current Neurovascular Research

Journal: Current Neurovascular Research

Author(s):  Kenneth Maiese

Abstract:

Background: The mammalian circadian clock and its associated clock genes are increasingly been recognized as critical components for a number of physiological and disease processes that extend beyond hormone release, thermal regulation, and sleep-wake cycles. New evidence suggests that clinical behavior disruptions that involve prolonged shift work and even space travel may negatively impact circadian rhythm and lead to multi-system disease.

Methods: In light of the significant role circadian rhythm can hold over the body’s normal physiology as well as disease processes, we examined and discussed the impact circadian rhythm and clock genes hold over lifespan, neurodegenerative disorders, and tumorigenesis.

Results: In experimental models, lifespan is significantly reduced with the introduction of arrhythmic mutants and leads to an increase in oxidative stress exposure. Interestingly, patients with Alzheimer’s disease and Parkinson’s disease may suffer disease onset or progression as a result of alterations in the DNA methylation of clock genes as well as prolonged pharmacological treatment for these disorders that may lead to impairment of circadian rhythm function. Tumorigenesis also can occur with the loss of a maintained circadian rhythm and lead to an increased risk for nasopharyngeal carcinoma, breast cancer, and metastatic colorectal cancer. Interestingly, the circadian clock system relies upon the regulation of the critical pathways of autophagy, the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), and silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) as well as proliferative mechanisms that involve the wingless pathway of Wnt/β-catenin pathway to foster cell survival during injury and block tumor cell growth.

Conclusion: Future targeting of the pathways of autophagy, mTOR, SIRT1, and Wnt that control mammalian circadian rhythm may hold the key for the development of novel and effective therapies against aging- related disorders, neurodegenerative disease, and tumorigenesis.

Read more here: http://www.eurekaselect.com/154252

HIGHLIGHTED ARTICLE – UNCONTROLLED HYPERTENSION AND ONCOLOGY – CURRENT VASCULAR PHARMACOLOGY

CVP-Articles_15-6-Moses S. Elisaf

To access the article, please visit: http://www.eurekaselect.com/151613/article

Highlighted Article – Exploration of Angiotensin II Type 1 Receptor Modulators by Molecular Fingerprints and Docking Simulations – Letters in Drug Design & Discovery

LDDD-Articles_14-12-Sarfaraj Niazi.jpg

To access this article, please visit: http://www.eurekaselect.com/152926

Most Accessed Article – Warming Up to New Possibilities with the Capsaicin Receptor TRPV1: mTOR, AMPK, and Erythropoietin – Current Neurovascular Research

Journal: Current Neurovascular Research

Author(s): Kenneth Maiese.

Abstract:

Background: Transient receptor potential (TRP) channels are a superfamily of ion channels termed after the trp gene in Drosophila that are diverse in structure and control a wide range of biological functions including cell development and growth, thermal regulation, and vascular physiology. Of significant interest is the transient receptor potential cation channel subfamily V member 1 (TRPV1) receptor, also known as the capsaicin receptor and the vanilloid receptor 1, that is a non-selective cation channel sensitive to a host of external stimuli including capsaicin and camphor, venoms, acid/basic pH changes, and temperature.

Methods: Given the multiple modalities that TRPV1 receptors impact in the body, we examined and discussed the role of these receptors in vasomotor control, metabolic disorders, cellular injury, oxidative stress, apoptosis, autophagy, and neurodegenerative disorders and their overlap with other signal transduction pathways that impact trophic factors.

Results: Surprisingly, TRPV1 receptors do not rely entirely upon calcium signaling to affect cellular biology, but also have a close relationship with the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), and protein kinase B (Akt) that have roles in pain sensitivity, stem cell development, cellular survival, and cellular metabolism. These pathways with TRPV1 converge in the signaling of growth factors with recent work highlighting a relationship with erythropoietin (EPO). Angiogenesis and endothelial tube formation controlled by EPO requires, in part, the activation of TRPV1 receptors in conjunction with Akt and AMPK pathways.
Conclusion: TRPV1 receptors could prove to become vital to target disorders of vascular origin and neurodegeneration. Broader and currently unrealized implementations for both EPO and TRPV1 receptors can be envisioned for for the development of novel therapeutic strategies in multiple systems of the body.

 

To access the article, please visit: http://www.eurekaselect.com/150838

Article by Disease – “Current Perspectives on Novel Drug Delivery Systems and Approaches for Management of Cervical Cancer: A Comprehensive Review”

Article by Disease on “Oncology

Graphical Abstract:

 

Abstract:

Cervical cancer is uterine cervix carcinoma, the second deadly cancer and has a high incidence and mortality rate. In the developing world conventional treatment strategies such as surgical intervention and chemoradiotherapy are less widely available. Currently cancer research focuses on improving treatment of cervical cancer using various therapies such as gene therapy, recombinant protein therapy, photodynamic therapy, photothermal therapy and delivery of chemotherapeutic agents using nanoparticles, hydrogel and liposomal based delivery systems and also localized delivery systems which exist in a variety of forms such as intravaginal rings, intravaginal patches, intravaginal films, etc. in order to improve the drug delivery in a controlled manner to the diseased site thereby reducing systemic side effects. The present review encloses existing diverse delivery systems and approaches intended for treatment of cervical cancer.

Read more: http://www.eurekaselect.com/node/130992/article

Editor’s Choice Article ::: Endothelial Progenitor Cells in Sprouting Angiogenesis: Proteases Pave the Way

Current Molecular Medicine, 15(7): 606-620.

Author(s): A. Laurenzana, G. Fibbi, F. Margheri, A. Biagioni, C. Luciani, M. Del Rosso and A Chilla.

Sprouting angiogenesis consists of the expansion and remodelling of existing vessels, where the vascular sprouts connect each other to form new vascular loops. Endothelial Progenitor Cells (EPCs) are a subtype of stem cells, with high proliferative potential, able to differentiate into mature Endothelial Cells (ECs) during the neovascularization process. In addition to this direct structural role EPCs improve neovascularization, also secreting numerous pro-angiogenic factors able to enhance the proliferation, survival and function of mature ECs, and other surrounding progenitor cells. While sprouting angiogenesis by mature ECs involves resident ECs, the vasculogenic contribution of EPCs is a high hurdle race. Bone marrowmobilized EPCs have to detach from the stem cell niche, intravasate into bone marrow vessels, reach the hypoxic area or tumour site, extravasate and incorporate into the new vessel lumen, thus complementing the resident mature ECs in sprouting angiogenesis. The goal of this review is to highlight the role of the main protease systems able to control each of these steps. ..

Read more here: http://benthamscience.com/journals/current-molecular-medicine/volume/15/issue/7/page/606/

Most Cited Article ::: Na+-H+ Exchanger, pH Regulation and Cancer

Author(s): Stephan J. Reshkin, Rosa A. Cardone and Salvador Harguindey.

Abstract: Cancer cells and tissues, regardless of their origin and genetic background, have an aberrant regulation of hydrogen ion dynamics leading to a reversal of the intracellular to extracellular pH gradient ( pHi to pHe) in cancer cells and tissue as compared to normal tissue. This perturbation in pH dynamics rises very early in carcinogenesis and is one of the most common patho-physiological hallmarks of tumors. Recently, there has been a very large increase in our knowledge of the importance and roles of pHi and pHe in developing and driving a series of tumor hallmarks. This reversed proton gradient is driven by a series of proton export mechanisms that underlie the initiation and progression of the neoplastic process. In this context, one of the primary and best studied regulators of both pHi and pHe in tumors is the Na+/H+ exchanger isoform 1 (NHE1). The NHE1 is an integral membrane transport protein involved in regulating pH and in tumor cells is a major contributor to the production and maintenance of their reversed proton gradient. It is activated during oncogene- dependent transformation resulting in cytosolic alkalinization which then drives subsequent hallmark behaviors including growth factor- and substrate-independent growth, and glycolytic metabolism. It is further activated by various growth factors, hormone, the metabolic microenvironment (low serum, acidic pHe and hypoxia) or by ECM receptor activation. This review will present the recent progress in understanding the role the NHE1 in determining tumor progression and invadopodia- guided invasion/metastasis and recent patents for NHE1 inhibitors and novel therapeutic protocols for anti-NHE1 pharmacological approaches. These may represent a real possibility to open up new avenues for wide-spread and efficient treatments against cancer.

-See more at: http://benthamscience.com/journal/abstracts.php?journalID=rpacdd&articleID=10450


This article is from the journal Recent Patents on Anti-Cancer Drug Discovery

Major Article Contributions by some of the Indian Authors in Bentham Science Publishers Journal; Protein & Peptide Letters

Article Title:Antiangiogenic Function of Antithrombin is Dependent on its Conformational Variation: Implication for Other Serpins

Author(s): Asim Azhar, Poonam Singh, Qudsia Rashid, Asma Naseem, Mohammad Sazzad Khan and Mohamad Aman Jairajpuri

 

Abstract: Endogenous angiogenesis inhibitor that specifically decreases tumor cell proliferation can be used to treat cancer since angiogenesis is required at every step of tumor progression and metastasis. Endothelial cells are the main target for the antiangiogenic therapy because they are non-transformed and easily accessible to angiogenic inhibitors. Antithrombin functions as a principal plasma protein inhibitor of blood coagulation proteinases and belongs to the family of serine protease inhibitors (serpins) which have common mechanism of inhibition. Antithrombin acquires a potent antiangiogenic activity upon conversion of the native molecule to cleaved or latent conformation. Cleaved and latent preparations of bovine and human plasma derived antithrombin inhibited capillary endothelial cell proliferation and the growth of human SK-NAS neuroblastoma and Lewis lung carcinoma tumors in mice as compared to the native antithrombin. The native form of antithrombin binds with high affinity to vascular heparan sulfate proteoglycans containing a specific pentasaccharide sequence and it is this cofactor interaction that activated antithrombin to maximal rate of thrombin inhibition. Upon inhibitory complex formation with target proteinases the antithrombin undergoes stressed to relaxed transformation and lose their high affinity for pentasacchride. Low affinity relaxed conformation with reduced heparin binding like cleaved and latent are antiangiogenic but native high affinity heparin binding stressed conformation is not, indicating the critical importance of heparin affinity in antithrombin antiangiogenic function. Based on evidence of interactions of the endothelial cell growth factors bFGF (Basic fibroblast growth factor) and VEGF (vascular endothelial cell growth factor) with heparin like molecule in matrix, the possibility of antiangiogenic antithrombin to interfere with endothelial cell growth and angiogenesis through heparin mediated mechanism deserves serious consideration and investigation. It is also possible that cleaved and latent conformations with reduced affinity for heparins can also induce conformational change in the antithrombin which can open an epitope on the antithrombin surface for appropriate interactions on the endothelial surface for better antiangiogenic activity. This review illustrates the potential of antithrombin and other serpin family members as endogenous antiangiogenic proteins.

For more details, visit: http://benthamscience.com/journal/abstracts.php?journalID=ppl&articleID=103876

 

Article Title:X-Ray Structure of PTP1B in Complex with a New PTP1B Inhibitor

Author(s): M.V.V.V. Sekhar reddy, Chakshumathi Ghadiyaram, Sunil Kumar Panigrahi, Narasimha Rao Krishnamurthy, Subramanya Hosahalli, Arun P. Chandrasekharappa, Deepankar Manna, Sangamesh E. Badiger, Pramod K. Dubey and Lakshmi Narasu Mangamoori

Abstract: Protein tyrosine phosphatase 1B (PTP1B) is a prototype non receptor cytoplasmic PTPase enzyme that has been implicated in regulation of insulin and leptin signaling pathways. Studies on PTP1B knockout mice and PTP1B antisense treated mice suggested that inhibition of PTP1B would be an effective strategy for the treatment of type II diabetes and obesity. Here we report the X-ray structure of PTP1B in complex with compound IN1834-146C (PDB ID 4I8N). The crystals belong to P3121 space group with cell dimensions (a = b = 87.89 Å, c = 103.68 Å) diffracted to 2.5 Å. The crystal structure contained one molecule of protein in the asymmetric unit and was solved by molecular replacement method. The compound engages both catalytic site and allosteric sites of PTP1B protein. We described the molecular interaction of the compound with the active site residues of PTP1B in this crystal structure report.

For more details, visit: http://benthamscience.com/journal/abstracts.php?journalID=ppl&articleID=114408

 

Article Title:The Solubility and Stability of Amino Acids in Biocompatible Ionic Liquids

Author(s): T. Vasantha, Awanish Kumar, Pankaj Attri, Pannuru Venkatesu and R.S. Rama Devi

Abstract: In recent years, ionic liquids (ILs) represent a new class of biocompatible co-solvents for biomolecules. In this work, we report the apparent transfer free energies ( ΔG’tr) for six amino acids (AA) from water to aqueous solutions of six ammonium based ILs (diethylammonium acetate (DEAA), diethylammonium sulfate (DEAS), triethyl ammonium acetate (TEAA), triethylammonium sulfate (TEAS), triethylammonium dihydrogen phosphate (TEAP), and trimethylammonium acetate (TMAA)) through solubility measurements, as a function of IL concentration at 298.15 K under atmospheric pressure. Salting-out effect was found for AA in aqueous IL solutions with increasing IL concentrations. In addition, we observed positive values of Δ G’tr for AA from water to ILs, indicating that the interactions between ILs and AA are unfavorable. From the obtained results, we found that the selected ammonium based ILs act as stabilizers for the structure of AA.

For more details, visit: http://benthamscience.com/journal/abstracts.php?journalID=ppl&articleID=113378

 

Article Title:Purification and Biophysical Characterization of an 11S Globulin from Wrightia tinctoria Exhibiting Hemagglutinating Activity

Author(s): Pramod Kumar, Dipak N. Patil, Anshul Chaudhary, Shailly Tomar, Dinesh Yernool, Nirpendra Singh, Pushpanjali Dasauni, Suman Kundu and Pravindra Kumar

Abstract: Wrightia tinctoria globulin (WTG), one of the major seed storage proteins, was isolated for the first time from seeds of the medicinal plant. WTG was extracted and purified to homogeneity in two steps using anion-exchange and size-exclusion chromatographies. On an SDS–PAGE gel under non-reducing conditions, a major band of ~56 kDa was observed; under reducing conditions, however, two major polypeptides, one with molecular weight ~32-34 kDa and the other with molecular weight ~22-26 kDa were observed. Intact mass determination by MALDI-TOF supported this observation. The N-terminal amino acid sequence of WTG matched in NCBI database with an expressed sequence tag obtained from the c-DNA of developing embryo m-RNA of Wrightia tinctoria. The EST sequence was further substantiated by partial de novo internal sequencing using MALDI-TOF/TOF. The high sequence homology with seed storage protein 11S globulin confirmed that WTG is a type of 11S globulin. Circular dichroism analysis showed that the secondary structure of WTG consists predominantly of β-sheets (44.2%) and moderate content of α-helices (10.3%). WTG showed hemagglutinating property indicating that the protein may possess lectin-like activity. WTG was crystallized at 20 °C by the vapour diffusion method using PEG 400 as precipitant. The crystals belonged to the orthorhombic space group P212121 with cell dimensions of a=109.9Å, b=113.2Å and c=202.2Å with six molecules per asymmetric unit. Diffraction data were collected to a resolution of 2.2Å under cryocondition. Preliminary structure solution of WTG indicated the possibility of a hexameric assembly in its asymmetric unit.

For more details, visit: http://benthamscience.com/journal/abstracts.php?journalID=ppl&articleID=108419

%d bloggers like this: