Press Release | New book series aims to provide frontier reviews on anti-infective agents

 

post news.jpg

 

Frontiers in Anti-Infective Agents is a book series that focuses on antibiotics and vaccines, both current and new.

The series is essential reading for general readers, healthcare professionals, researchers and academicians actively involved in research on infectious diseases and anti-infective therapeutic drugs.

The first volume is a comprehensive documentation on major infectious diseases from tropical countries which pose a serious threat to global healthcare programs. These include diseases such as tuberculosis, AIDS, leishmaniasis (kala-azar), elephantiasis, malaria, leprosy, various fungal disorders and emergent viral diseases. Due to the widespread use of antibiotics, there is an emergence of drug resistant pathogens in many regions. Hence, there is a need to search for novel, cost-effective bioactive compounds that demonstrate high efficacy and low toxicity in human cells from unexplored ecosystems to combat emerging drug resistant pathogens. Chapters written for this volume focus on the pathogenesis and etiology of each of the mentioned diseases, updated WHO reports wherever applicable, conventional drugs and their pharmacokinetics as well as new approaches to develop anti-infective agents.

The authors also present a detailed report on multi-drug resistant pathogens (‘superbugs’) and new measures being taken up to eradicate them. Information about new antimicrobials (bioactive peptides and silk protein sericin) and the approaches taken by scientists and healthcare professionals for successful targeting of these molecules for human medicine. For more information, please visit: https://benthambooks.com/book/9789811432736/https://benthambooks.com/book/9789811432736/

About The Editors:

Dr. K. Tamreihao completed his PhD and Master of Science from the Department of Biochemistry, Manipur University, India. He is working as PDF in a project sponsored by Department of Biotechnology, Government of India. His research interest lies in the area of plant growth promotion by actinobacteria and feather degradation by keratinolytic actinobacteria and the biofertilizing potential of degraded feathers.

Dr Saikat Mukherjee completed his M.Sc (Biotechnology) from Calcutta University and PhD from CSIR- Indian Institute of Chemical Biology, Kolkata. He has participated in postdoctoral research programs in University of Geneva, Switzerland and Manipur University, India. His research expertise is in mitochondrial bioenergetics and purification of protein complexes from protozoal, human, bacterial and algal systems.

Prof. Debananda S. Ningthoujam earned his Masters of Science (Life Sciences) from Jawaharlal Nehru University, New Delhi and PhD (Environmental Biotechnology) from NEERI, Nagpur. He is currently working as a Professor of Biochemistry at the university of Manipur. Prof. Ningthoujam is a life member of several scientific society including AMI, BRSI, SBC, ASM and ISCA. He is actively researching actinomycete biology and biotechnology and has several completed and ongoing projects to his credit. Six new actinomycete species have been reported from his lab. Prof. Ningthoujam has over 25 years of teaching experience and five research scholars have earned their PhDs under his mentorship. He has also supervised several PDF candidates.

READ FULL PRESS RELEASE TO FIND OUT MORE: https://www.eurekalert.org/pub_releases/2019-12/bsp-nbs122319.php

EDITOR’S CHOICE – The Modification and Design of Antimicrobial Peptide

Journal:  Current Pharmaceutical Design

Author(s): Yidan Gao, Hengtong Fang, Lu Fang, Dawei Liu, Jinsong Liu, Menghan Su, Zhi Fang, Wenzhi Ren*, Huping Jiao*

Abstract:

The antimicrobial peptides (AMPs) are a group of unique naturally occurring anti-microbial compounds with around 50 amino acids. It represents promising therapeutic agents to the infectious disease without concerning about drug resistance. However, commercial development of these peptides for even the simplest application has been hindered by the limitations of sources, instability, toxicity and bioavailability. To improve the properties of the artificial synthesized AMPs, the modification and design are the hotspots of the AMPs research. In fact, more than half of the known AMPs are naturally modified. In this review, two types of modification strategies, biochemical modification and chemical modification were summarized. Although, the chemical modification is versatile and direct, the manufacturing cost is greatly increased compared to the antibiotics. With the recent progress of the protein modification enzyme, the biochemical modification of the antimicrobial peptide followed by heterologous expression has great application prospects.

Read more here: http://www.eurekaselect.com/159793/article

 

Article by Disease – “Insights into the Zinc-Dependent Deacetylase LpxC: Biochemical Properties and Inhibitor Design”

ARTICLE BY DISEASE ON “DIABETES”

Abstract:

The bacterial enzyme UDP-3-O-[(R)-3-hydroxymyristoyl]-N-acetylglucosamine deacetylase (LpxC), catalyzing the first committed step of lipid A biosynthesis, represents a promising target in the development of novel antibiotics against Gram-negative bacteria. Structure, catalytic reaction mechanism and regulation of the Zn2+-dependent metalloamidase have been intensively investigated. The enzyme is required for growth and viability of Gram-negative bacteria, displays no sequence homology with any mammalian protein, but is highly conserved in Gram-negative bacteria, thus permitting the development of Gram-negative selective antibacterial agents with limited off-target effects. Several smallmolecule LpxC inhibitors have been developed, like the substrate analog TU-514 (12a), the aryloxazoline L-161,240 (13w), the sulfonamide BB-78485 (23a), the N-aroyl-L-threonine derivative CHIR-090 (24a), the sulfone-containing pyridone LpxC-3 (43e), and the uridine-based inhibitor 1-68A (47a), displaying diverse inhibitory and antibacterial activities. Most of these compounds share a Zn2+-binding hydroxamate moiety attached to a structural element addressing the hydrophobic tunnel or the UDP binding site. The butadiynyl derivative ACHN-975 (28) is the first LpxC inhibitor entering clinical trials.

Read more: http://www.eurekaselect.com/node/141238/article

Article by Disease – “Cranberry for Urinary Tract Infection: From Bench to Bedside”

Article by Disease on “Urology”

Abstract

Urinary tract infections are common infectious diseases which can occur in any part of the urinary tract such as bladder, kidney, ureters, and urethra. They are commonly caused by bacteria that enter through the urethra. Urinary tract infections commonly develop in the bladder and spread to renal tissues. Up to now, there are different antimicrobial agents which have beneficial role on urinary tract infections. However, most of them cause different adverse effects and therefore, much attention has been paid to the search for effective therapeutic agents with negligible adverse effects. Cranberry is known as one of the most important edible plants, which possesses potent antimicrobial effects against the bacteria responsible for urinary tract infections. Growing evidence has shown that cranberry suppresses urinary tract infections and eradicates the bacteria. Therefore, the aim of this study is to critically review the available literature regarding the antimicrobial activities of cranberry against urinary tract infection microorganisms. In addition, we discuss etiology, epidemiology, risk factors, and current drugs of urinary tract infections to provide a more complete picture of this disease.

Read more: http://benthamscience.com/journals/current-topics-in-medicinal-chemistry/volume/17/issue/3/page/331/

Bentham Open Access Article

images

The article entitled “A 30-years Review on Pharmacokinetics of Antibiotics: Is the Right Time for Pharmacogenetics?” in the journal Current Drug Metabolism, 2014, 15, 581-598, is now open for all to view and access.

Download the complete article here: http://bit.ly/1vlXVKT
For journal information, please visit: http://bit.ly/1qUXoAe

 

Podcast by Dr. Marina

Journal Name: Recent Patents on Anti-Infective Drug Discovery
Vol.8, No. 2, 2013
Article: “Photosensitizers as an alternative to antibiotics.
Author: Dr. Marina Nisnevitch

%d bloggers like this: