Most cited article: Drug Targeting and Conventional Treatment of Multiple Myeloma: Analysis of Target-specific Nanotherapies in Disease Models

Author(s): Christina TranEden ParkPedro L. Rodriguez Flores and Robert B. Campbell*

Abstract:

Extensive studies have explored potential therapies against multiple myeloma (MM), whether in hospitals, universities or in private institutional settings. Scientists continue to study the mechanism(s) underlying the disease as a basis for the development of more effective treatment options. There are many therapeutic agents and treatment regimens used for multiple myeloma. Unfortunately, no cure or definitive treatment options exist. The goal of treatment is to maintain the patient in remission for as long as possible. Therapeutic agents used in combination can effectively maintain patients in remission. While these therapies have increased patient survival, a significant number of patients relapse. The off-target toxicity and resistance exhibited by target cells remain a challenge for existing approaches. Ongoing efforts to understand the biology of the disease offer the greatest chance to improve therapeutic options. Nanoparticles (targeted drug delivery systems) offer new hope and directions for therapy. This review summarizes FDA-approved agents for the treatment of MM, highlights the clinical barriers to treatment, including adverse side effects normally associated with the use of conventional agents, and describes how nanotherapeutics have overcome barriers to impede conventional treatments.

Learn more: http://bit.ly/3RIcBaB

Editors Choice – Biomedical Applications and Patents on Metallic Nanoparticles

Author(s):Geetanjali SinghPramod K. Sharma and Rishabha Malviya*

Volume 11, Issue 2, 2021

Published on: 29 April, 2020

Page: [153 – 162]

Pages: 10

DOI: 10.2174/2210681210999200430005827

Abstract

Aim: The manuscript aims to discuss the advanced biomedical applications and patents on metallic nanoparticles.

Discussion: The preparation of metallic nanoparticles and their application are an influential area for research. There are various physical and chemical methods (viz. chemical reduction, thermal decomposition, etc.) for synthesizing silver nanoparticles; biological methods have been suggested as possible eco-friendly alternatives. The synthesis of metallic nanoparticles encounters many problems including solvent toxicity, the formation of hazardous by-products and consumption of energy. So it is important to design eco-friendly benign procedures for the synthesis of metallic nanoparticles. It is investigated from the study that metallic nanoparticles are used in the treatment of different diseases. Metallic nanoparticles are also used in the detection and therapy of cancer. These also have antifungal, antibacterial, anti-inflammatory, antiviral and anti-angiogenic properties.

Conclusion: It is concluded from the manuscript that the synthesis of metallic nanoparticles is easy, eco-friendly, less time consuming and affordable. The metallic nanoparticles used in the biomedical field have an emerging future in nanoscience and nanotechnology. Read now: https://bit.ly/3pmnC3W

Open Access Article – Metal-organic Nanopharmaceuticals

Author(s):Benjamin Steinborn and Ulrich Lächelt*

Volume 8, Issue 3, 2020

Page: [163 – 190]

Pages: 28

DOI: 10.2174/2211738508666200421113215

Abstract

Coordinative interactions between multivalent metal ions and drug derivatives with Lewis base functions give rise to nanoscale coordination polymers (NCPs) as delivery systems. As the pharmacologically active agent constitutes a main building block of the nanomaterial, the resulting drug loadings are typically very high. By additionally selecting metal ions with favorable pharmacological or physicochemical properties, the obtained NCPs are predominantly composed of active components which serve individual purposes, such as pharmacotherapy, photosensitization, multimodal imaging, chemodynamic therapy or radiosensitization. By this approach, the assembly of drug molecules into NCPs modulates pharmacokinetics, combines pharmacological drug action with specific characteristics of metal components and provides a strategy to generate tailorable multifunctional nanoparticles. This article reviews different applications and recent examples of such highly functional nanopharmaceuticals with a high ‘material economy’.

Lay Summary: Nanoparticles, that are small enough to circulate in the bloodstream and can carry cargo molecules, such as drugs, imaging or contrast agents, are attractive materials for pharmaceutical applications. A high loading capacity is a generally aspired parameter of nanopharmaceuticals to minimize patient exposure to unnecessary nanomaterial. Pharmaceutical agents containing Lewis base functions in their molecular structure can directly be assembled into metal-organic nanopharmaceuticals by coordinative interaction with metal ions. Such coordination polymers generally feature extraordinarily high loading capacities and the flexibility to encapsulate different agents for a simultaneous delivery in combination therapy or ‘theranostic’ applications. Read now: https://bit.ly/3PcOi1F

Press Release | The eighth edition of Topics in Anti-Cancer Research has been issued

 

Bentham Science news 2020

 

This volume focuses mainly on the new approaches and challenges encountered in cancer stem cell therapy.

BENTHAM SCIENCE PUBLISHERS

 

The current book series discusses the advancement in effective cancer therapy and deals with the developments of new drugs and new patented targets, agents and synthetic compounds. The following areas have been highlighted in this volume:

  • Recent patent literature reveals the role of estrogen as endocrine disruptor through inhibition of the AF1 Domain of liganded and unliganded Estrogen Receptors (ERs).
  • Natural and potent synthetic phenazines patent derivatives with substituent groups i.e. alkyl, amide, carboxylic acid, aldehyde, and pyrano groups show potent anticancer activities.
  • The potential role of ShcA proteins in stimulating metastasis and advancement of cancer will offer the new tools for cancer therapy. New approaches and challenges for cancer stem cell aiming at cancer therapy is included in this volume.
  • The anti-tumor activity of mono Bcl-2 inhibitors and Bcl-2 inhibitors in combination with rapologs will be a novel beneficial invention for the cure of advanced Renal Cell Carcinoma (RCC) as well as other cancer.

The diversity of research topics published in this series will be valuable for cancer researchers, clinicians and cancer professionals aiming to develop new anti-cancer targets and patents for the treatment of various cancers.

About The Editors:

Dr. Atta-ur-Rahman, Ph.D. in organic chemistry from Cambridge University (1968), has 1150 international publications in several fields of organic chemistry including 775 research publications, 43 international patents, 70 chapters in books and 254 books published largely by major U.S. and European presses. He is the Editor-in-Chief of eight European Chemistry journals. He is Editor of the world’s leading encyclopaedic series of volumes on natural products “Studies in Natural Product Chemistry” 60 volumes of which have been published under his Editorship by Elsevier during the last two decades.

Dr. Khurshid Zaman completed her Ph.D. in Organic Chemistry from H.E.J. Institute of Chemistry, Karachi, Pakistan. Some research work on trace element analysis and Liver regeneration was carried out from Lund University Sweden during her Ph.D. She has done Post Doc. Research from Hamdard University in collaboration with H.E.J. Institute of Chemistry, Karachi, Pakistan and from Geneva, Switzerland in the area of tissue culture. She has published research papers, reviews and edited several book series volumes. She was the Editor of Pakistan Journal of Scientific Research. Dr. Zaman is currently serving as the Executive Editor of Patent Journals and Book series at Bentham Science Publishers. She is also a member of WAME and UNIDO Assessor in Laboratory Accreditation ISO/IEC 17025. Read full Press Release to find out more: https://www.eurekalert.org/pub_releases/2020-01/bsp-tee011620.php

 

For more information please visit: https://benthambooks.com/book/9789811404382/

Podcast | Cancer Nanotechnology: A New Revolution for Cancer Diagnosis and Therapy

 

Journal Name: Current Drug Metabolism

Author(s): Vivek K Chaturvedi, Anshuman Singh, Vinay K. Singh, Mohan P. Singh*.

 

Background: Nanotechnology is gaining significant attention worldwide for cancer treatment. Nanobiotechnology encourages the combination of diagnostics with therapeutics, which is a vital component of a customized way to deal with the malignancy. Nanoparticles are being used as Nanomedicine which participates in diagnosis and treatment of various diseases including cancer. The unique characteristic of Nanomedicine i.e. their high surface to volume ratio enables them to tie, absorb, and convey small biomolecule like DNA, RNA, drugs, proteins, and other molecules to targeted site and thus enhances the efficacy of therapeutic agents.

Objective: The objective of the present article is to provide an insight of several aspect of nanotechnology in cancer therapeutics such as various nanomaterials as drug vehicle, drug release strategies and role of nanotechnology in cancer therapy.

Methods: We performed an extensive search on bibliographic database for research article on nanotechnology and cancer therapeutics and further compiled the necessary information from various articles into the present article.

Results: Cancer nanotechnology confers a unique technology against cancer through early diagnosis, prevention, personalized therapy by utilizing nanoparticles and quantum dots.Nano-biotechnology plays an important role in the discovery of cancer biomarkers. Quantum dots, gold nanoparticles, magnetic nanoparticles, carbon nanotubes, gold nanowires etc. have been developed as a carrier of biomolecules that can detect cancer biomarkers. Nanoparticle assisted cancer detection and monitoring involves biomolecules like proteins, antibody fragments, DNA fragments, and RNA fragments as the base of cancer biomarkers.

Conclusion: This review highlights various approaches of cancer nanotechnology in the advancement of cancer therapy. For article details, please visit: http://www.eurekaselect.com/165536/article

 

To subscribe our YouTube Channel, please click here: https://bit.ly/1lr0czy

eBook Highlights| Topics in Anti-Cancer Research -Volume 7

The seventh volume of the series covers topics such as drug delivery, new avenues for treatment of esophageal cancer and the role of nutrigenomics in finding new therapies.

Topics in Anti-Cancer Research covers important advances on both experimental (preclinical) and clinical cancer research in drug development. The book series offers readers an insight into current and future therapeutic approaches for the prevention of different types of cancers, synthesizing new anti-cancer agents, new patented compounds, targets and agents for cancer therapy as well as recent molecular and gene therapy research.

The comprehensive range of themes covered in each volume will be beneficial to clinicians, immunologists, and R&D experts looking for new anti-cancer targets and patents for the treatment of neoplasms, as well as varied approaches for cancer therapy.

The latest volume of the series starts with a review on non-coding RNAs and associated patents. These patents help researchers to identify various cancer biomarkers and oncogenic regulatory mechanisms. 3 chapters cover nanocarrier patents for enhanced drug delivery of chemotherapeutic agents. Nanocarriers allow drug manufacturers to encapsulate chemotherapeutic agents within thin membranes which allows the molecules to reach the targeted cellular location in the body. The specific topics refer to Nanotaxol which is a nanotechnology enhanced version of Taxol® – a chemotherapeutic agent derived from chemicals in the bark of Taxus brevifolia, stimuli responsive nanocarriers which change behavior according to temperature and pH and smart nanoformulations which rely on different chemical formulations to reach molecular targets. Other topics covered in this volume include the role of autophagy in esophageal cancer, and nutrigenomics (the science of how biological nutrients affect gene expression) in cancer research. In terms of patents, the reader will find a list of compounds which modulate autophagy, and nutrigenomic methods that allow researchers to understand nutritional biomarkers of disease and customize nutraceutical formulations based on genetic and metabolic factors, respectively. To read out more, please visit: https://ebooks.benthamscience.com/book-highlights/190102001/

 

cover.jpg

Press Release | Estrogen is a much more effective anticancer agent than antiestrogens

 

This article by Prof. Zsuzsanna Suba is published in Recent Patents on Anti-Cancer Drug Discovery, Volume 12, Issue 2, 2017

Antiestrogen treatment was introduced into breast cancer therapy based on the presumed carcinogenic capacity of endogenous estrogen hormones. In antiestrogen resistant breast cancers, increased expression and activity of estrogen receptors (ERs) is regarded as a survival technique, presuming that increased estrogen signaling is an absolutely proliferative stimulus. Unexpectedly, among certain circumstances, estrogen treatment is capable of inducing apoptotic death in tumors, even in antiestrogen resistant ones justifying the strong apoptotic capacity of estrogen. Analysis of the results of studies on both estrogen and antiestrogen treated tumors may clarify the associations among artificial ER blockade, compensatory restoration of ER signaling and the clinical behavior of cancers.

Inherited BRCA1/2 mutations may be regarded as pathologic models of defective estrogen signaling. In BRCA mutation carriers, the liganded activation of ERs is weak, while an increase in unliganded ER activation results in a more or less compensatory upregulation of ER signaling. Mutation carriers exhibit failure in their ovarian functions, while their risk for cancer is strongly increased (for breast cancer in particular). In cases carrying BRCA mutation, an increase in estrogen levels via either endogenous estrogen synthesis in pregnancy or exogenous estrogen administration via contraceptive use may reduce the risk of cancer development.

Estrogen activated ERs are the principal initiators and organizers of DNA stabilization. ERs work in an upregulative circuit with CYP19 aromatase enzyme and genome safeguarding proteins including BRCAs. The upregulative circuit ensures a strong DNA protection during the proliferation of healthy cells, whilst inducing apoptotic death in spontaneously initiated malignant cells in a Janus faced manner. By contrast, malignant cell proliferation exhibits a downregulative circuit between the low and/or defective expressions of ER and BRCA proteins. The malfunction of ER signaling is coupled with a damaged control of DNA replication resulting in an unrestrained proliferation of poorly differentiated tumor cells. In conclusion, in patients with cancer, estradiol induced upregulation of ER signaling may be an excellent means for the restoration of genome stabilizer machinery and for inducing apoptotic death in cancer cells.

Estrogen treatment upregulates the remnants of genome stabilizer machinery in breast cancer cell lines so as to induce an apoptotic death. Estrogen administration increases the expression and transcriptional activity of ERs in tumor cells, via both liganded and unliganded pathways. In patients, of all examined tumor markers, an increased expression of ERs in their breast cancer defines the prolonged survival. Moreover, the activation of ER-alpha at Ser 167 in tumors is indicative of longer disease free and overall survival in breast cancer patients.

Estrogen treatment induces ESR1 gene amplification resulting in higher expression levels of ERs in breast cancers. Patients exhibiting ESR1 gene amplification in their tumors, experience longer disease free survival than those without it.

Estradiol treatment mediates an increased expression of long non coding RNAs (lncRNAs) including HOTAIR in breast cancer cells. HOTAIR is capable of epigenetic gene modifications resulting in necessary activating mutations in the ESR1 gene. Patients with increased HOTAIR expression in their tumors were found to have lower risks for relapse and mortality than those showing low HOTAIR expression.

Estradiol treatment increases aromatase expression and activity in breast cancer cells in a dose dependent manner. Estradiol activated ERs strongly upregulate the estrogen synthesis of aromatase enzyme so as to increase estrogen signaling and to induce consequential DNA restoration and apoptotic death. Among breast cancer cases, a direct correlation was experienced between the aromatase activity of removed tumors and the patient’s survival time after surgery. Moreover, among young women with breast cancer, the absence of CYP19 aromatase activity in their surgically removed tumors carried a high risk for local cancer recurrence.

Estrogen treatment induces an upregulated expression of DNA safeguarding BRCA1 protein in breast cancer cell lines. In turn, it was found that the BRCA1 protein promotes ESR1 gene activation and transcriptionally upregulates ER-alpha expression in tumor cells. These correlations justify that ER-alpha and BRCA1 protein work in close partnership in the DNA stabilization process which provides apoptotic stimuli for breast cancer cells.

In conclusion, treatment with estrogen may strongly upregulate both estrogen signaling and DNA safeguarding in breast cancers promoting tumor responses. In antiestrogen responsive tumors, the blockade of liganded ER activation via either tamoxifen or aromatase inhibitor, provokes compensatory overexpression and hyperactivity of both ERs and aromatase enzyme via unliganded activations of partially blocked ERs. This compensatory activation of estrogen signaling may restore DNA stability promoting tumor responses. By contrast, in antiestrogen resistant tumors, a long term, exhaustive tamoxifen or aromatase inhibitor treatment induces a compensatory extreme upregulation of ER signaling; however, it may be insufficient to break through the near complete, artificially induced ER blockade. Antiestrogen resistant tumors exhibit a rapid growth in spite of the continuous administration of antiestrogens.

 

Browse the Article at: Activating Mutations of ESR1, BRCA1 and CYP19 Aromatase Genes Confer Tumor Response in Breast Cancers Treated with Antiestrogens

ARTICLE BY DISEASE – Discovery of Hedgehog Antagonists for Cancer Therapy

ARTICLE BY DISEASE ON “BASAL CELL CARCINOMA

 

 

Abstract:

Background: The evolutionarily conserved Hedgehog (Hh) signaling cascade is one of the key mediators of embryonic development of many metazoans. This pathway has been extensively targeted by small molecule inhibitors as its misregulation leads to various malignancies and developmental disorders. Thus, blocking this pathway can be a novel therapeutic avenue for the treatment of Hedgehog-dependent cancers. This review covers the mechanism of hedgehog signaling in vertebrate cells, provides an overview of reported small molecule Hh pathway inhibitors, with the synthetic routes and SAR studies of some of them discussed briefly.

Methods: A comprehensive survey of literature related to synthetic and naturally occurring Hh signaling antagonists reported till date is presented.

Results: Given the selectivity of small molecules targeting, this pathway for cancer treatment compared to kinase, tubulin or HDAC inhibitors, several such antagonists have been discovered, of which some are in preclinical development and clinical studies. Most of the reported small molecules primarily antagonize the Smoothened receptor although agents targeting Gli1 transcription factor and Shh ligand have also been discovered. Till date, nine Smo antagonists have been evaluated in clinical trials.GDC- 0449/Vismodegib and NVP-LDE225/Erismodegib, were granted approval by the U.S. Food and Drug Administration (U.S. FDA) for the treatment of basal cell carcinoma.

Conclusion: The challenge is to identify agents that target the pathway downstream of Smo and develop strategies to overcome acquired drug resistance to the current Smo inhibitors with deeper understanding of the resistance mechanisms.

 

 

For more details, please visit: http://www.eurekaselect.com/node/150925/article

MOST ACCESSED ARTICLE – USP7: Target Validation and Drug Discovery for Cancer Therapy – Medicinal Chemistry

Journal: Medicinal Chemistry

Author(s): Jin Zhou*, Jinzheng Wang, Chao Chen, Haoliang Yuan, Xiaoan Wen*, Hongbin Sun*

Graphical Abstract:

 

Abstract:

Background: USP7 (ubiquitin specific protease 7, also known as HAUSP) is one of the deubiquitinating enzymes (DUB) that reverses ubiquitination and spares substrate proteins from degradation.

Methods: After a brief introduction of ubiquitin-proteasome system (UPS) and human DUB, this review focuses on the structural and functional complexity of USP7 in tumor development and progression. Afterwards, physiological regulatory mechanisms and manipulation strategies for USP7 are elaborated. Finally, we discuss the advances and difficulties of USP7 as a novel therapeutic target for cancer.

Results: It is mostly concerned that USP7 regulates the dynamics of the p53 and Mdm2 network by deubiquitinating both p53 and its E3 ubiquitin ligase, Mdm2. Recently, USP7 has also been recognized as a regulator of many other tumor associated proteins such as FOXO, PTEN and Claspin, consequently being involved in cell cycle control, DNA damage response, apoptosis and many other cellular processes. Consistently, aberrant USP7 expression and activity have been connected to various types of cancers, which along with lots of validating genetic and functional experiments make this enzyme a compelling target for the treatment of cancer. Currently disclosed inhibitor discovery programs and relevant research have identified several synthetic small molecules, natural compounds, small peptides and one ubiquitin variant that have specific USP7 inhibitory effects and considerable antitumor activities.

Conclusion: Taken together, USP7 is a promising therapeutic target and USP7 inhibitors hold promise as a new approach to cancer therapy.

Read more here:  http://www.eurekaselect.com/156502

EDITOR’S CHOICE – Targeted Drug Delivery Systems and Their Therapeutic Applications in Cancer and Immune Pathological Conditions – Infectious Disorders – Drug Targets

Journal: Infectious Disorders – Drug Targets

Author(s): Jamshed Iqbal*, Fareeha Anwar, Saifullah Afridi*

Graphical Abstract:

 

Abstract:

Background: More than a century ago, Paul Ehrlich proposed the idea of a drug working as a “magic bullet” that selectively eliminates diseased cells without harming the surrounding normal cells. Since then, much progress has been made in this field to broaden the scope for targeted delivery of drugs. A major problem remain the toxic effects of targeted drugs on healthy cells. In order to reduce the adverse effects of chemotherapy on healthy tissues, we survey the use of recent drug delivery systems for targeted therapy.

Objective: The selective delivery of the drugs to specific diseased cells or tissues still is a daunting task. Ideally, for target drug delivery systems, the system should be made up of carriers and drugs, where carriers precisely target the desired drug. This issue covers the recent advancements in modern techniques for such purposes.

Result and Conclusion: It encompasses advances, benefits and limitations in state of art work of targeted drug delivery through hydrogels, microfluidics, nanoparticles, carbon nanotubes, polymeric micelles, liposomes, lipoprotein based drug carriers and dendrites.

 

%d bloggers like this: