Editor’s Choice: Differentiation of Human Induced Pluripotent Stem Cells into Male Germ Cells

Abstract:

Infertility is defined as not being able to become pregnant or to conceive a child after one year or longer of regular unprotected intercourse. Male infertility refers to a male’s inability to cause pregnancy that can result from deficiencies in semen quality, sperm concentration, or abnormal sperm function. Till now, there are few effective methods for the treatment of a couple with male infertility. In the past few years, stem cell-based therapy as a promising strategy has emerged for the treatment of male infertility. Human Pluripotent Stem Cells (hPSCs) can self-renew and differentiate into any type of cell. Human Embryonic Stem Cells (hESCs) and induced Pluripotent Stem Cells (hiPSCs) are two pluripotent populations that can proliferate and give rise to ectodermal, mesodermal, endodermal, and germ cell lineages. Both undifferentiated hiPSCs and hESCs are powerful candidates for the treatment of male infertility. Generation of male germ cells from hPSCs can provide new mechanistic insights into the regulation of spermatogenesis and have a great opportunity for families with infertility. Therefore, a robust, reproducible, and low-cost culture method that supports hPSCs differentiation into male germ cells is necessary. However, very few studies have focused on the derivation of sperm-like cells from hiPSCs and the details of hPSCs differentiation into male germ cells have not been fully investigated. Therefore, in this review, we focus on the in vitro differentiation potential of hiPSCs into male germ cells. Read more here: https://www.eurekaselect.com/183481/article

Animated Abstract | Hematopoietic Differentiation of Human Pluripotent Stem Cells: HOX and GATA Transcription Factors as Master Regulators

Journal Name: Current Genomics

Author(s): Khaled Alsayegh, Lorena V. Cortés-Medina, Gerardo Ramos-Mandujano, Heba Badraiq, Mo Li*

 

 

 

Graphical Abstract:

 

 

 

Animated Abstract:

 

 

Abstract:

Numerous human disorders of the blood system would directly or indirectly benefit from therapeutic approaches that reconstitute the hematopoietic system. Hematopoietic stem cells (HSCs), either from matched donors or ex vivo manipulated autologous tissues, are the most used cellular source of cell therapy for a wide range of disorders. Due to the scarcity of matched donors and the difficulty of ex vivo expansion of HSCs, there is a growing interest in harnessing the potential of pluripotent stem cells (PSCs) as a de novo source of HSCs. PSCs make an ideal source of cells for regenerative medicine in general and for treating blood disorders in particular because they could expand indefinitely in culture and differentiate to any cell type in the body. However, advancement in deriving functional HSCs from PSCs has been slow. This is partly due to an incomplete understanding of the molecular mechanisms underlying normal hematopoiesis. In this review, we discuss the latest efforts to generate human PSC (hPSC)-derived HSCs capable of long-term engraftment. We review the regulation of the key transcription factors (TFs) in hematopoiesis and hematopoietic differentiation, the Homeobox (HOX) and GATA genes, and the interplay between them and microRNAs. We also propose that precise control of these master regulators during the course of hematopoietic differentiation is key to achieving functional hPSC-derived HSCs. To know more about our Animated Abstract, please visit: http://www.eurekaselect.com/175820/article

Press Release | Making blood on demand: How far have we come?

 

News Release-2020.jpg

 

The article by Dr. Mo Li et al. is published in Current Genomics, 2019

BENTHAM SCIENCE PUBLISHERS

For more information please visit: http://www.eurekaselect.com/node/175820/article/hematopoietic-differentiation-of-human-pluripotent-stem-cells-hox-and-gata-transcription-factors-as-master-regulators

Editor’s Choice – “Potential for Stem Cells Therapy in Alzheimer’s Disease: Do Neurotrophic Factors Play Critical Role?”

Journal: Current Alzheimer Research

Author(s): Parul Bali, Debomoy K. Lahiri, Avijit Banik, Bimla Nehru and Akshay Anand

car

Abstract:

Alzheimer’s disease (AD) is one of the most common causes of dementia. Despite several decades of research in AD, there is no standard disease- modifying therapy available and currentlyapproved drugs provide only symptomatic relief. Stem cells hold immense potential to regenerate damaged tissues and are currently tested in some brain-related disorders, such as AD, amyotrophic lateral sclerosis (ALS) and Parkinson’s disease (PD). We review stem cell transplantation studies using preclinical and clinical tools. We describe different sources of stem cells used in various animal models and explaining the putative molecular mechanisms that can rescue neurodegenerative disorders. The clinical studies suggest safety, efficacy and translational potential of stem cell therapy. The therapeutic outcome of stem cell transplantation has been promising in many studies, but no unifying hypothesis can convincingly explain the underlying mechanism. Some studies have reported paracrine effects exerted by these stem cells via the release of neurotrophic factors, while other studies describe the immunomodulatory effects exerted by the transplanted cells. There are also reports which indicate that stem cell transplantation might result in endogenous cell proliferation or replacement of diseased cells. In animal models of AD, stem cell transplantation is also believed to increase expression of synaptic proteins.

Read more here: http://benthamscience.com/journals/current-alzheimer-research/volume/14/issue/2/page/208/

%d bloggers like this: