New Issue | Current Drug Targets; Volume 21 Issue 5

cdt

Current Drug Targets

Volume 21, Issue 5

AIMS & SCOPE

Current Drug Targets aims to cover the latest and most outstanding developments on the medicinal chemistry and pharmacology of molecular drug targets e.g. disease specific proteins, receptors, enzymes, genes.

Current Drug Targets publishes guest edited thematic issues written by leaders in the field covering a range of current topics of drug targets. The journal also accepts for publication full-length/mini review articles and drug clinical trial studies.

As the discovery, identification, characterization and validation of novel human drug targets for drug discovery continues to grow; this journal is essential reading for all pharmaceutical scientists involved in drug discovery and development.

 

 

Articles from the Journal 

For more details on the articles, please visit HERE 

New Issue | CNS & Neurological Disorders – Drug Targets; Volume 18 Issue 10

 

cnsnddt

 

CNS & Neurological Disorders – Drug Targets aims to cover all the latest and outstanding developments on the medicinal chemistry, pharmacology, molecular biology, genomics and biochemistry of contemporary molecular targets involved in neurological and central nervous system (CNS) disorders e.g. disease specific proteins, receptors, enzymes, genes.

CNS & Neurological Disorders – Drug Targets publishes guest edited thematic issues written by leaders in the field covering a range of current topics of CNS & neurological drug targets. The journal also accepts for publication original research articles, letters, reviews and drug clinical trial studies.

As the discovery, identification, characterization and validation of novel human drug targets for neurological and CNS drug discovery continues to grow; this journal is essential reading for all pharmaceutical scientists involved in drug discovery and development.

 

Articles from the journal: CNS & Neurological Disorders – Drug Targets; Volume 18 Issue 10

 

 

 

For details on the articles, please visit this link: http://www.eurekaselect.com/node/646/cns-neurological-disorders-drug-targets-/issue/18/2538/10/9564

AIMS & SCOPE – CNS & Neurological Disorders – Drug Targets

Aims & Scope

CNS & Neurological Disorders – Drug Targets aims to cover all the latest and outstanding developments on the medicinal chemistry, pharmacology, molecular biology, genomics and biochemistry of contemporary molecular targets involved in neurological and central nervous system (CNS) disorders e.g. disease specific proteins, receptors, enzymes, genes.

CNS & Neurological Disorders – Drug Targets publishes guest edited thematic issues written by leaders in the field covering a range of current topics of CNS & neurological drug targets. The journal also accepts for publication original research articles, letters, reviews and drug clinical trial studies.

As the discovery, identification, characterization and validation of novel human drug targets for neurological and CNS drug discovery continues to grow; this journal is essential reading for all pharmaceutical scientists involved in drug discovery and development.

 

cnsnddt-flyer (1).jpg

 

For more details, please visit: https://benthamscience.com/journals/cns-and-neurological-disorders-drug-targets/aims-scope/#top 

New Issue :: Current Protein & Peptide Science (Volume: 19, Issue: 11)

 

Current Protein & Peptide Science publishes review articles on specific aspects involving proteins, peptides, and interactions between the enzymes, the binding interactions of hormones and their receptors; the properties of transcription factors and other molecules that regulate gene expression; the reactions leading to the immune response; the process of signal transduction; the structure and function of proteins involved in the cytoskeleton and molecular motors; the properties of membrane channels and transporters; and the generation and storage of metabolic energy. In addition, reviews of experimental studies of protein folding and design are given special emphasis.

 

cpps.jpg

Articles from the journal Current Protein & Peptide Science Volume 19, Issue 11:

 

For details on the articles, please visit this link ::  https://bit.ly/2Ob67Tp

Upcoming Thematic Issue – Enzymes in medicinal chemistry

Hottopic-MRMC-Eduardo-Torre

http://benthamscience.com/journals/mini-reviews-in-medicinal-chemistry/

Major Article Contributions by Some of our Indian Authors in Bentham Science Publishers Journal: Medicinal Chemistry

mc-journal-cover

New Quinolinyl–1,3,4–Oxadiazoles: Synthesis, In Vitro Antibacterial, Antifungal and Antituberculosis Studies

Author(s): Rahul V. Patel, Premlata Kumari and Kishor H. Chikhalia

Affiliation: Department of Applied Chemistry, S. V. National Institute of Technology, Surat–395007, Gujarat, India.

Abstract

In order to generate hybrid antimicrobial remedies with novel mode of action, two series of quinoline based 1,3,4-oxadiazole derivatives condensed with N-aryl/benzothiazolyl acetamides were synthesized and the MIC values of the compounds towards eight reference bacterial strains (S. aureus, B. cereus, E. coli, P. aeruginosa, K. pneumoniae, S. typhi, P. vulgaris, S. flexneri), four fungi (A. niger, A. fumigatus, A. clavatus, C. albicans) and Mycobacterium tuberculosis H37Rv were assayed in vitro. Quinoline–6–carboxlic acid was treated with thionyl chloride in refluxing methanol to obtain the corresponding ester derivative to be hydrazinolyzed by 99% hydrazine hydrate in ethanol to produce carbohydrazide intermediate. The carbohydrazide precursor underwent cyclization by carbon disulfide and ethanolic KOH to construct 5–quinolinyl–6–yl–1,3,4–oxadiazol–2–thiol. Substituted 2–chloro–N–phenyl(benzothiazolyl)aceta-mide derivatives were then condensed to 1,3,4-oxadiazole nucleus via sulphur linkage to yield the desired products. Target products bearing N–benzothiazolyl–2–chloroacetamides displayed good inhibitory potential. The biological screening identified that many final analogues exhibited a significant inhibition of the growth of microorganisms at 3.12-25 μg/mL of MIC, which were comparable to control drugs. The influence of the presence of various functional groups to the phenyl/benzothiazolyl ring on activity profiles was investigated. The proposed structures of the newly prepared products were confirmed with the aid of IR, 1H NMR, 13C NMR spectroscopy and elemental analysis. These results may provide new insights in the design of a novel pool of bioactive templates.

A Combination of 3D-QSAR Modeling and Molecular Docking Approach for the Discovery of Potential HIF Prolyl Hydroxylase Inhibitors

Author(s): Mahesh Kumar Teli and Rajanikant Golgodu Krishnamurthy

Affiliation: School of Biotechnology Coordinator, Bioinformatics Centre National Institute of Technology Calicut Calicut – 673601, Kerala, India.

Abstract

Suppression of HIF prolyl hydroxylase (PHD) activity by small molecule inhibitors leads to the stabilization of HIF and offers a potential therapeutic option for treating ischemic disorders. In this study, pharmacophore based QSAR modeling, virtual screening and molecular docking approaches were concurrently used to identify target-specific PHD inhibitors with better ADME properties and to readily minimize false positives and false negatives. A 3D-QSAR based method was used to generate a pharmacophore hypothesis (AAAN). The obtained 3D-QSAR model has an excellent correlation coefficient value (r2 = 0.99), Fisher ratio (F = 386) and exhibited good predictive power (q2 = 0.64). The hypothesis was validated and utilized for chemical database screening and the retrieved compounds were subjected to molecular docking for further refinement. Quantitative AAAN hypothesis comprised three H-bond accepter and one negative ionizable group feature and it give good predictive ability because all the QSAR information it was providing matched with the active site information. The hypothesis was validated and used as a 3D query for database screening. After manual selection, molecular docking and further refinement, based on the molecular interactions of inhibitors with the essential amino acids residues, 12 candidates with good ADME and blood brain barrier permeability values were selected as potential PHD inhibitors.

Modeling of LIM-Kinase 2 Inhibitory Activity of Pyrrolopyrimidine Analogues: Useful in Treatment of Ocular Hypertension and Glaucoma

Author(s): Gagandip Singh, Manish K. Gupta, Viney Kumar and Yenamandra S. Prabhakar

Affiliation: Molecular Modeling and Pharmacoinformatics Lab, Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga-142001, India.

Abstract

The LIM-Kinase 2 (LIMK2) inhibitory activity of a series of pyrrolopyrimidine analogs has been analyzed through combinatorial protocol in multiple linear regressions (CP-MLR) and partial least square (PLS) using different descriptors obtained from DRAGON software. The empirical, topological and charge descriptors have led to statistically significant QSAR models and showed good external predictivity as reflected in test set R2 values (0.782 to 0.888). The obtained structure-activity correlations underlined the significance of bulkiness and molecular polarizability in improving the activity. The topological descriptors suggested that open chain or branched substituents are favorable while cyclic /ring substituents are unfavorable for the activity. The descriptors identified in the study showed that pyrrolopyrimidine scaffold holds scope for modulating LIMK2 inhibitory activity. The study gives a direction for further exploration of chemical space of pyrrolopyrimidine analogs as LIMK2 inhibitors.

Variable Selection Based QSAR Modeling on Bisphenylbenzimidazole as Inhibitor of HIV-1 Reverse Transcriptase

Author(s): Surendra Kumar and Meena Tiwari

Affiliation: Computer Aided Drug Design Lab, Department of Pharmacy, Shri G. S. Institute of Technology and Science, 23, Park Road, Indore-452003, (M.P.), India.

Abstract

The emergence of mutant virus in drug therapy for HIV-1 infection has steadily risen in the last decade. Inhibition of reverse transcriptase enzyme has emerged as a novel target for the treatment of HIV infection. The aim to decipher the structural features that interact with receptor, we report a quantitative structure activity relationship (QSAR) study on a dataset of thirty seven compounds belonging to bisphenylbenzimidazoles (BPBIs) as reverse transcriptase inhibitors using enhanced replacement method (ERM), stepwise multiple linear regression (Stepwise-MLR) and genetic function approximation (GFA) method for selecting a subset of relevant descriptors, developing the best multiple linear regression model and defining the QSAR model applicability domain boundaries. The enhanced replacement method was found to give better results r2=0.8542, Q2(loo) = 0.7917, r2pred = 0.7812) at five variables as compared to stepwise MLR and GFA method, evidenced by internal and external validation parameters. The modified r2 (r2m) of the training set, test set and whole data set were calculated and are in agreement with the enhanced replacement method. The results of QSAR study rationalize the structural requirement for optimum binding of ligands. The developed QSAR model shows that hydrophobicity, flexibility, three dimensional surface area, volume and shape of molecule are important parameters to be considered for designing new compounds and to decipher reverse transcriptase enzyme inhibition activity of these compounds at molecular level. The applicability domain was defined to find the similar analogs with better prediction power.

%d bloggers like this: