Protein Misfolding Diseases and Therapeutic Approaches

Kusum Yadav, Anurag Yadav, Priyanka Vashistha, Veda P. Pandey, Upendra N. Dwivedi

What is it about?

Protein folding is the process by which a polypeptide chain acquires its functional, native 3D structure. Protein misfolding, on the other hand, is a process in which protein fails to fold into its native functional conformation. This misfolding of proteins may lead to precipitation of a number of serious diseases such as cystic fibrosis (CF), Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS) etc. Protein quality-control (PQC) systems, consisting of molecular chaperones, proteases and regulatory factors, help in protein folding and prevent its aggregation. At the same time, PQC systems also do sorting and removal of improperly folded polypeptides. Among the major types of PQC systems involved in protein homeostasis are cytosolic, endoplasmic reticulum (ER) and mitochondrial ones. The cytosol PQC system includes a large number of component chaperones, such as nascent-polypeptide-associated complex (NAC), Hsp40, Hsp70, prefoldin and T Complex Protein-1 (TCP-1) ring complex (TRiC). Protein misfolding diseases caused due to defective cytosolic PQC system include diseases involving keratin/collagen proteins, cardiomyopathies, phenylketonuria, PD and ALS. The components of PQC system of endoplasmic reticulum (ER) include Binding immunoglobulin Protein (BiP), calnexin (CNX), calreticulin (CRT), glucose-regulated protein GRP94, the thioldisulphide oxidoreductases, protein disulphide isomerase (PDI) and ERp57. ER-linked misfolding diseases include CF and familial neurohypophyseal diabetes insipidus (FNDI). The components of mitochondrial PQC system include mitochondrial chaperones such as the Hsp70, the Hsp60/Hsp10 and a set of proteases having AAA+ domains similar to the proteasome that are situated in the matrix or the inner membrane. Protein misfolding diseases caused due to defective mitochondrial PQC system include medium-chain acyl-CoA dehydrogenase (MCAD)/short-chain acyl-CoA dehydrogenase (SCAD) deficiency diseases, hereditary spastic paraplegia. Among therapeutic approaches towards the treatment of various protein misfolding diseases, chaperones have been suggested as potential therapeutic molecules for target based treatment. Chaperones have been advantageous because of their efficient entry and distribution inside the cells, including specific cellular compartments, in therapeutic concentrations. Based on the chemical nature of the chaperones used for therapeutic purposes, molecular, chemical and pharmacological classes of chaperones have been discussed.

Why is it important?

The review is important to better understand the mechanism of protein misfolding for building strategies for curing age related and other diseases. Read now:

Read what our Authors have to say about publishing in our Journals | Dr. Rina Das


Rina Das.jpg

By Dr. Rina Das

Journal Name: Current Drug Targets

Contributed Article: Considering Circadian Pattern of Blood Pressure in the Treatment of Hypertension via Chronotherapy: A Conducive or Maladroit Approach

EDITOR’S CHOICE ARTICLE | Heat Shock Factor (HSF): The Promoter of Chaperone Genes. A Mini Review

Journal Name: Current Proteomics

Author(s): Natália Galdi Quel,Carlos H.I. Ramos*.



Graphical Abstract:



Protein homeostasis, or proteostasis, is required for proper cell function and thus must be under tight maintenance in all circumstances. In crowded cell conditions, protein folding is sometimes unfavorable, and this condition is worsened during stress situations. Cells cope with such stress through the use of a Protein Quality Control system, which uses molecular chaperones and heat shock proteins as its major players. This system aids with folding, avoiding misfolding and/or reversing aggregation. A pivotal regulator of the response to heat stress is Heat Shock Factor, which is recruited to the promoters of the chaperone genes, inducting their expression. This mini review aims to cover our general knowledge on the structure and function of this factor.


To read out more, please visit:

%d bloggers like this: