Editors choice: Neurosteroid Modulation of GABAA Receptor Function by Independent Action at Multiple Specific Binding Sites

Author(s): Lei WangDouglas F. CoveyGustav Akk and Alex S. Evers*

Neurosteroids are endogenous modulators of GABAA receptors that mediate anxiety, pain, mood and arousal. The 3-hydroxyl epimers, allopregnanolone (3α-OH) and epiallopregnanolone (3β-OH) are both prevalent in the mammalian brain and produce opposite effects on GABAA receptor function, acting as positive and negative allosteric modulators, respectively. This Perspective provides a model to explain the actions of 3α-OH and 3β-OH neurosteroids. The model is based on evidence that the neurosteroid epimers bind to an overlapping subset of specific sites on GABAA receptors, with their net functional effect on channel gating being the sum of their independent effects at each site.

Learn more: http://bit.ly/3OZdyKt

Editors Choice Article – Exploration of Ion Channels in Mycobacterium tuberculosis: Implication on Drug Discovery and Potent Drug Targets Against Tuberculosis

Author(s): Manish Dwivedi*.

Journal Name: Current Chemical Biology


Scientific interest in mycobacteria has been sparked by the medical importance of Mycobacterium tuberculosis (Mtb) that is known to cause severe diseases in mammals, i.e. tuberculosis and by properties that distinguish them from other microorganisms which are notoriously difficult to treat. The treatment of their infections is difficult because mycobacteria fortify themselves with a thick impermeable cell envelope. Channel and transporter proteins are among the crucial adaptations of Mycobacterium that facilitate their strength to combat against host immune system and anti-tuberculosis drugs. In previous studies, it was investigated that some of the channel proteins contribute to the overall antibiotic resistance in Mtb. Moreover, in some of the cases, membrane proteins were found responsible for virulence of these pathogens. Given the ability of M. tuberculosis to survive as an intracellular pathogen and its inclination to develop resistance to the prevailing anti-tuberculosis drugs, its treatment requires new approaches and optimization of anti-TB drugs and investigation of new targets are needed for their potential in clinical usage. Therefore, it is imperative to investigate the survival of Mtb. in stressed conditions with different behavior of particular channel/ transporter proteins. Comprehensive understanding of channel proteins and their mechanism will provide us direction to find out preventive measures against the emergence of resistance and reduce the duration of the treatment, eventually leading to plausible eradication of tuberculosis. To read out more, please visit: http://www.eurekaselect.com/180061/article

%d bloggers like this: