OPEN ACCESS ARTICLE – Proteomic Changes Between Populus Allotriploids and Diploids Revealed Using an iTRAQ-based Quantitative Approach – Current Proteomics

Journal: Current Proteomics

Author(s): Yi Wang, Yun Li, Yujing Suo, Yu Min, Xiangyang Kang

Graphical Abstract:

 

Abstract:

Background: Polyploid breeding is a powerful approach for Populus genetic improvement because polyploid trees have valuable characteristics, including better timber quality and a higher degree of stress resistance compared with their full-sib diploids. However, the genetic mechanism underlying this phenomenon remains unknown.

Objective: To better understand the proteomic changes between Populus allotriploids and diploids, we examined the proteomic profiles of allotriploid and diploid Populus by iTRAQ labeling coupled with two-dimensional liquid chromatography and MALDI-TOF/TOF mass spectrometry (MS).

Method: iTRAQ labeling coupled with two-dimensional liquid chromatography and MALDITOF/ TOF mass spectrometry (MS).
Results: Between the Populus allotriploid and the full-sib diploid, 932 differentially expressed proteins (DEPs) were identified. These DEPs were primarily involved in stress, defense, transportation, transcriptional and/or translational modification, and energy production. The pathway analysis indicated that most of the DEPs were implicated in carbohydrate transport and metabolism, nitrogen metabolism and glycolysis, and the ribosome assembly pathway. These data suggest high protein divergence between Populus allotriploids and diploids, and rapid changes during hybridization.
Conclusion: The results provide new data for further understanding of the mechanisms of polyploid trees that generally display increased height growth compared with their full-sib diploids.

 

Open Access Article – iTRAQ-based Proteomic Analysis of APPSw,Ind Mice Provides Insights into the Early Changes in Alzheimer’s Disease – Current Alzheimer Research

Journal: Current Alzheimer Research

Author(s): Nan Li, Pinghong Hu, Tiantian Xu, Huan Chen, Xiaoying Chen, Jianwen Hu, Xifei Yang, Lei Shi, Jian-hong Luo, Junyu Xu.

Abstract:

Background: Several proteins have been identified as potential diagnostic biomarkers in imaging, genetic, or proteomic studies in Alzheimer disease (AD) patients and mouse models. However, biomarkers for presymptom diagnosis of AD are still under investigation, as are the presymptom molecular changes in AD pathogenesis.

Objective: In this study, we aim to analyzed the early proteomic changes in APPSw,Ind mice and to conduct further functional studies on interesting proteins.

Methods: We used the isobaric tags for relative and absolute quantitation (iTRAQ) approach combined with mass spectrometry to examine the early proteomic changes in hippocampi of APPSw,Ind mice. Quantitative reverse transcription polymerase chain reaction (RT-PCR) and immuno-blotting were performed for further validation. Finally, the functions of interesting proteins β-spectrin and Rab3a in APP trafficking and processing were tested by shRNA knockdown, in N2A cells stably expressing β-amyloid precursor protein (APP).
Results: The iTRAQ and RT-PCR results revealed the detailed molecular changes in oxidative stress, myelination, astrocyte activation, mTOR signaling and Rab3-dependent APP trafficking in the early stage of AD progression. Knock down of β -spectrin and Rab3a finally led to increased APP fragment production, indicating key roles of β-spectrin and Rab3a in regulating APP processing.
Conclusion: Our study provides the first insights into the proteomic changes that occur in the hippocampus in the early stages of the AD mouse model. In addition to improving the understanding of molecular alterations and functional cascades involved in early AD pathogenesis, our findings raise the possibility of developing potential biomarkers and therapeutic targets for early AD.
%d bloggers like this: