Testimonial By Rebecca Pratiti


Read what our Authors have to say about publishing in our Journal

Journal Name: Cardiovascular & Hematological Agents in Medicinal Chemistry

Contributed Article:  Epidemiology And Adverse Consequences Of Hookah/Waterpipe Use: A Systematic Review

MOST ACCESSED ARTICLE – Role of Mitochondrial Mechanism in Chemotherapy-Induced Peripheral Neuropathy

Journal Name: Current Drug Metabolism

Author(s): Mohammad Waseem, Pooja Kaushik, Heena Tabassum*, Suhel Parvez.




Graphical Abstract:



Background: Even though chemotherapeutic regimens show considerable importance, it may cause progressive, continuing and sometimes irreversible peripheral neuropathy. Chemotherapy induced peripheral neuropathy (CIPN) is comprised of sensory abnormalities that are most distressing issues. The mechanism associated with CIPN pathogenesis is not completely revealed and its treatment is still questionable. The purpose of this review was to investigate the role of mitochondria in CIPN.

Methods: This review is literature based that describes the mitochondrial mechanism underlying CIPN and the neuropathic complications associated with different antineoplastic agents.

Results: For severe pain, a modification towards less efficient chemotherapeutic drugs could possibly be needed and/or patients perhaps prefer to withdrawal therapeutic regimen. The epidemiology of CIPN is still debatable. The major recurrent molecules causing CIPN are platinum based drugs including cisplatin and oxaliplatin, thalidomide, bortezomib, vinka alkaloids and taxanes. Neuropathic pain is one of the symptoms of CIPN. Various neuropathic disorders as well as CIPN are due to mitochondrial impairment, relevant impairment of Ca2+ signalling pathways and reactive oxygen species (ROS) that ultimately leads to apoptosis.

Conclusion: The pathophysiology of CIPN is complicated as chemotherapeutic medications often involve combination of drugs. With these combinatorial therapies cancer survivors develop continuing effects of CIPN which require rehabilitation strategies for the recovery of patient’s condition and quality of life.


READ MORE HERE: http://www.eurekaselect.com/158146

OPEN ACCESS ARTICLE – Does Ceruloplasmin Defend Against Neurodegenerative Diseases?

Journal Name: Current Neuropharmacology

Author(s): Bo Wang , Xiao-Ping Wang*.




Ceruloplasmin (CP) is the major copper transport protein in plasma, mainly produced by the liver. Glycosylphosphatidylinositol-linked CP (GPI-CP) is the predominant form expressed in astrocytes of the brain. A growing body of evidence has demonstrated that CP is an essential protein in the body with multiple functions such as regulating the homeostasis of copper and iron ions, ferroxidase activity, oxidizing organic amines, and preventing the formation of free radicals. In addition, as an acute-phase protein, CP is induced during inflammation and infection. The fact that patients with genetic disorder aceruloplasminemia do not suffer from tissue copper deficiency, but rather from disruptions in iron metabolism shows essential roles of CP in iron metabolism rather than copper. Furthermore, abnormal metabolism of metal ions and oxidative stress are found in other neurodegenerative diseases, such as Wilson’s disease, Alzheimer’s disease and Parkinson’s disease. Brain iron accumulation and decreased activity of CP have been shown to be associated with neurodegeneration. We hypothesize that CP may play a protective role in neurodegenerative diseases. However, whether iron accumulation is a cause or a result of neurodegeneration remains unclear. Further research on molecular mechanisms is required before a consensus can be reached regarding a neuroprotective role for CP in neurodegeneration. This review article summarizes the main physiological functions of CP and the current knowledge of its role in neurodegenerative diseases.


Read more here: http://www.eurekaselect.com/161925 

EDITOR’S CHOICE – Mitochondrial Aconitase in Neurodegenerative Disorders

Journal: Current Drug Targets

Author(s): Fariba Khodagholi, Fatemeh Shaerzadeh*, Fateme Montazeri

Graphical Abstract:



Background: Mitochondrial aconitase (Aco2), a member of the family of iron-sulfur [4Fe- 4S]-containing dehydratases, is involved in cellular metabolism through the tricarboxylic acid cycle. Aco2 is highly susceptible to oxidative damage in a way that exposure to the reactive species and free radicals leads to release of iron from the central [4Fe-4S] cluster resulting in the production of the inactive form of Aco2.

Objective: There is increasing evidence supporting a direct association between impaired energy metabolism and the incidence and progression of neurodegenerative disorders in neuronal cells.

Results: It has been shown that alteration in bioenergetic parameters is a common pathological feature of the neurodegenerative diseases leading to neuronal dysfunction. Numerous studies have demonstrated that dysfunctional Aco2, among the other bioenergetic parameters, is a key factor that could promote neurodegeneration.

Conclusion: Increasing our knowledge about energy metabolism-related molecules including Aco2 affected by neurodegenerative disorders might be useful to find an efficient therapeutic strategy for those central nervous system-related diseases. Accordingly, in this review, we have focused on the events and processes that occur in neurodegeneration, leading to the inactivation of Aco2 in the brain.

Read more here: http://www.eurekaselect.com/154955/article


MOST ACCESSED ARTICLE – Protein Tyrosine Nitration – Current Aging Science

Journal: Current Aging Science

Author(s): Bulbul Chakravarti, Deb N. Chakravarti*

Graphical Abstract:


Background: Aging is the inevitable fate of all living organisms, but the molecular basis of physiological aging is poorly understood. Oxidative stress is believed to play a key role in the aging process. In addition to Reactive Oxygen Species (ROS), Reactive Nitrogen Species (RNS) are generated during aerobic metabolism in living organisms. Although protein damage and functional modification by ROS have been demonstrated in details, fewer studies have been reported on protein damage by RNS and its implication in the aging process. Proteins undergoing tyrosine nitration are associated with pathophysiology of several diseases, as well as physiological aging. The purpose of the current review article is to provide a brief summary of the biochemical mechanisms of tyrosine nitration, methodologies used for the detection of these modified proteins, effect of RNS induced post translational modification on biological functions and the putative role of tyrosine nitrated proteins in the aging process.

Methods: Published studies on the role of RNS in age related functional alteration of various organs/ tissues were critically reviewed and evaluated.

Results: Covalent modification of various proteins by tyrosine nitration is associated with modification of biological functions of various organs/tissues such as skeletal muscle, heart, brain and liver due to aging.

Conclusion: This information will be helpful to further investigate the interplay of different biochemical pathways and networks involved in the tyrosine nitration of various proteins due to aging with the ultimate goal to prevent the detrimental effects of RNS on the functional activities of these proteins.

Read more here: http://www.eurekaselect.com/150883/article


EDITOR’S CHOICE – Gamma-Decanolactone Improves Biochemical Parameters Associated with Pilocarpine-Induced Seizures in Male Mice – Current Molecular Pharmacology

Journal: Current Molecular Pharmacology

Author(s):  Pricila Pfluger, Gabriela Gregory Regner, Vanessa Rodrigues Coelho, Lucas Lima da Silva,Leopoldo Nascimento, Cassiana Macagnan Viau, Regis Adriel Zanette, Cleonice Hoffmann, Jaqueline Nascimento Picada, Jenifer Saffi, Patricia Pereira*

Graphical Abstract:



Background and Objective: Gamma-decanolactone (GD) is a monoterpene effective against seizures induced by pentylenetetrazole. The mechanism of action of GD is likely to be via glutamate antagonism. GD also inhibits intracellular reactive oxygen species (ROS) generation and the lipopolysaccharide-induced expression of inducible nitric oxide synthase (iNOS) and tumor necrosis factor-alpha (TNF-α) in vitro. Considering the neuropharmacological profile of GD studied so far, we investigated the effect of intraperitoneal administration of GD 100 and 300 mg/kg on pilocarpine (PIL)-induced status epilepticus (SE) in mice.

Methods: GD was administered 30 min before PIL. Behavioral (latency to first seizure and the percentage of clonic forelimb seizures), biochemical, and oxidative stress parameters were evaluated. DNA damage in the cerebral cortex of mice was assessed using the comet assay and mutagenic activity of GD was evaluated using Salmonella/microsome assay in TA100, TA98, TA97a, TA102, and TA1535 strains, with and without metabolic activation (S9 mix).

Results: The behavioral results showed that only the latency to the first clonic seizure increased in the groups treated with GD 300 mg/kg, but not when the animals received GD 100 mg/kg. Both GD doses were able to increase superoxide dismutase and catalase activities, inducing a decrease in ROS and nitrite production and in DNA damage in the cerebral cortex. GD was not able to induce base pair substitution and frameshift mutations in the absence or in the presence of metabolic activation.

Conclusion: These findings demonstrate that GD does not improve behavioral parameters in the PIL model, but it was able to protect seizure-related oxidative stress and DNA damage in mice, without inducing gene mutations.

Read more here: http://www.eurekaselect.com/156031/article

OPEN ACCESS ARTICLE – Moving to the Rhythm with Clock (Circadian) Genes, Autophagy, mTOR, and SIRT1 in Degenerative Disease and Cancer – Current Neurovascular Research

Journal: Current Neurovascular Research

Author(s):  Kenneth Maiese


Background: The mammalian circadian clock and its associated clock genes are increasingly been recognized as critical components for a number of physiological and disease processes that extend beyond hormone release, thermal regulation, and sleep-wake cycles. New evidence suggests that clinical behavior disruptions that involve prolonged shift work and even space travel may negatively impact circadian rhythm and lead to multi-system disease.

Methods: In light of the significant role circadian rhythm can hold over the body’s normal physiology as well as disease processes, we examined and discussed the impact circadian rhythm and clock genes hold over lifespan, neurodegenerative disorders, and tumorigenesis.

Results: In experimental models, lifespan is significantly reduced with the introduction of arrhythmic mutants and leads to an increase in oxidative stress exposure. Interestingly, patients with Alzheimer’s disease and Parkinson’s disease may suffer disease onset or progression as a result of alterations in the DNA methylation of clock genes as well as prolonged pharmacological treatment for these disorders that may lead to impairment of circadian rhythm function. Tumorigenesis also can occur with the loss of a maintained circadian rhythm and lead to an increased risk for nasopharyngeal carcinoma, breast cancer, and metastatic colorectal cancer. Interestingly, the circadian clock system relies upon the regulation of the critical pathways of autophagy, the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), and silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) as well as proliferative mechanisms that involve the wingless pathway of Wnt/β-catenin pathway to foster cell survival during injury and block tumor cell growth.

Conclusion: Future targeting of the pathways of autophagy, mTOR, SIRT1, and Wnt that control mammalian circadian rhythm may hold the key for the development of novel and effective therapies against aging- related disorders, neurodegenerative disease, and tumorigenesis.

Read more here: http://www.eurekaselect.com/154252

Upcoming Thematic Issue – Oxidative Stress in Neurodegenerative and Psychiatric Disorders – Current Psychopharmacology



Most Accessed Article – Warming Up to New Possibilities with the Capsaicin Receptor TRPV1: mTOR, AMPK, and Erythropoietin – Current Neurovascular Research

Journal: Current Neurovascular Research

Author(s): Kenneth Maiese.


Background: Transient receptor potential (TRP) channels are a superfamily of ion channels termed after the trp gene in Drosophila that are diverse in structure and control a wide range of biological functions including cell development and growth, thermal regulation, and vascular physiology. Of significant interest is the transient receptor potential cation channel subfamily V member 1 (TRPV1) receptor, also known as the capsaicin receptor and the vanilloid receptor 1, that is a non-selective cation channel sensitive to a host of external stimuli including capsaicin and camphor, venoms, acid/basic pH changes, and temperature.

Methods: Given the multiple modalities that TRPV1 receptors impact in the body, we examined and discussed the role of these receptors in vasomotor control, metabolic disorders, cellular injury, oxidative stress, apoptosis, autophagy, and neurodegenerative disorders and their overlap with other signal transduction pathways that impact trophic factors.

Results: Surprisingly, TRPV1 receptors do not rely entirely upon calcium signaling to affect cellular biology, but also have a close relationship with the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), and protein kinase B (Akt) that have roles in pain sensitivity, stem cell development, cellular survival, and cellular metabolism. These pathways with TRPV1 converge in the signaling of growth factors with recent work highlighting a relationship with erythropoietin (EPO). Angiogenesis and endothelial tube formation controlled by EPO requires, in part, the activation of TRPV1 receptors in conjunction with Akt and AMPK pathways.
Conclusion: TRPV1 receptors could prove to become vital to target disorders of vascular origin and neurodegeneration. Broader and currently unrealized implementations for both EPO and TRPV1 receptors can be envisioned for for the development of novel therapeutic strategies in multiple systems of the body.


To access the article, please visit: http://www.eurekaselect.com/150838

Editor’s Choice – “The Role of Oxidative Stress in Methamphetamine-induced Toxicity and Sources of Variation in the Design of Animal Studies”

Journal: Current Neuropharmacology

Author(s): Kate McDonnell-Dowling and John P Kelly



Background: The prevalence of methamphetamine (MA) use has increased in recent years. In order to assess how this drug produces its effects, both clinical and preclinical studies have recently begun to focus on oxidative stress as an important biochemical mechanism in mediating these effects.

Objective: The purpose of this review is to illustrate the variation in the design of preclinical studies investigating MA exposure on oxidative stress parameters in animal models.

Method: The experimental variables investigated and summarised include MA drug treatment, measurements of oxidative stress and antioxidant treatments that ameliorate the harmful effects of MA.

Results: These preclinical studies differ greatly in their experimental design with respect to the dose of MA (ranging between 0.25 and 20 mg/kg), the dosing regime (acute, binge or chronic), the time of measurement of oxidative stress (0.5 h to 2 wks after last MA administration), the antioxidant system targeted and finally the use of antioxidants including the route of administration (i.p. or p.o.), the frequency of exposure and the time of exposure (preventative or therapeutic).

Conclusion: The findings in this paper suggest that there is a large diversity among these studies and so the interpretation of these results is challenging. For this reason, the development of guidelines and how best to assess oxidative stress in animal models may be beneficial. The use of these simple recommendations mean that results will be more comparable between laboratories and that future results generated will give us a greater understanding of the contribution of this important biochemical mechanism and its implications for the clinical scenario.

Read more here: http://benthamscience.com/journals/current-neuropharmacology/volume/15/issue/2/page/300/

%d bloggers like this: