Open Access Articles – Ethosomes and Transfersomes: Principles, Perspectives and Practices

Journal Name: Current Drug Delivery

Author(s): Varun Garg, Harmanpreet Singh, Sneha Bimbrawh, Sachin Kumar Singh*,Monica Gulati, Yogyata Vaidya, Prabhjot Kaur.

 

 

Graphical Abstract:

 

 

Abstract:

Background: The success story of liposomes in the treatment of systemic infectious diseases and various carcinomas lead the scientists to the innovation of elastic vesicles to achieve similar success through transdermal route. In this direction, ethosomes and transfersomes were developed with the objective to design the vesicles that could pass through the skin. However, there is a lack of systematic review outlining the principles, method of preparation, latest advancement and applications of ethosomes and transfersomes. This review covers various aspects that would be helpful to scientists in understanding advantages of these vesicular systems and designing a unique nano vesicular delivery system.

Methods: Structured search of bibliographic databases for previously published peer-reviewed research papers was explored and data was culminated in terms of principle of these vesicular delivery systems, composition, mechanism of actions, preparation techniques, methods for their characterization and their application.

Results: A total of 182 papers including both, research and review articles, were included in this review in order to make the article comprehensive and readily understandable. The mechanism of action and composition of ethosomes and transfersomes was extensively discussed. Various methods of preparation such as, rotary film evaporation method, reverse phase evaporation method, vortex/ sonication method, ethanol injection method, freeze thaw methods, along with their advantages has been discussed. It was also discussed that both these elastic nanocarriers offer unique advantages of ferrying the drug across membranes, sustaining drug release as well as protecting the encapsulated bio actives from external environment. The enhanced bioavailability and skin penetration of ethosomes as compared to conventional vesicular delivery systems is attributed to the presence of ethanol in the bilayers while that for transfersomes accrues due to their elasticity along with their ability to retain their shape because of the presence of edge activators. Successful delivery of synthetic drugs as well as phytomedicines has been extensively reported through these vesicles.
Conclusion: Though these vesicular systems offer a good potential for rational drug delivery, a thoughtfully designed process is required to optimize the process variables involved. Industrial scale production of efficacious, safe, cost effective and stable formulations of both these delivery systems appears to be a pre-requisite to ensure their utility as the trans-dermal vehicles.

For more details, please visit: http://www.eurekaselect.com/142368

OPEN ACCESS ARTICLE – Physiological and Morphological Principles Underpinning Recruitment of the Cerebellar Reserve

Journal Name: CNS & Neurological Disorders – Drug Targets

Author(s): Shinji Kakei*, Takahiro Ishikawa, Jongho Lee, Takeru Honda, Donna S. Hoffman.

 

 

Graphical Abstract:

 

Abstract:

Background: In order to optimize outcomes of novel therapies for cerebellar ataxias (CAs), it is desirable to start these therapies while declined functions are restorable: i.e. while the so-called cerebellar reserve remains.

Objective: In this mini-review, we tried to define and discuss the cerebellar reserve from physiological and morphological points of view.

Method: The cerebellar neuron circuitry is designed to generate spatiotemporally organized outputs, regardless of the region. Therefore, the cerebellar reserve may be defined as a mechanism to restore its proper input-output organization of the cerebellar neuron circuitry, when it is damaged. Then, the following four components are essential for recruitment of the cerebellar reserve: operational local neuron circuitry; proper combination of mossy fiber inputs to be integrated; climbing fiber inputs to instruct favorable reorganization of the integration; deep cerebellar nuclei to generate reorganized outputs.

Results: We discussed three topics related to these resources, 1) principles of generating organized cerebellar outputs, 2) redundant mossy fiber inputs to the cerebellum, 3) plasticity of the cerebellar neuron circuitry.

Conclusion: To make most of the cerebellar reserve, it is desirable to start any intervention as early as possible when the cerebellar cell loss is minimal or even negligible. Therefore, an ideal future therapy for degenerative cerebellar diseases should start before consuming the cerebellar reserve at all. In the meantime, our real challenge is to establish a reliable method to identify the decrease in the cerebellar reserve as early as possible.

 

For more details, please visit: http://www.eurekaselect.com/160508

%d bloggers like this: