Journal: Current Neurovascular Research
Author(s): Abdelhaq Rami*, Julia Fekadu, Oliver Rawashdeh
Abstract:
Background: Autophagy is an intracellular bulk self-degrading process in which cytoplasmic contents of abnormal proteins and excess or damaged organelles are sequestered into autophagosomes, and degraded upon fusion with lysosomes. Although autophagy is generally considered to be pro-survival, it also functions in cell death processes. We recently reported on the hippocampal, higher vulnerability to cerebral ischemia in mice lacking the circadian clock protein PERIOD1 (PER1), a phenomenon we found to be linked to a PER1-dependent modulation of the expression patterns of apoptotic/autophagic markers.
Methods: To exclude the contribution of vascular or glial factors to the innate vulnerability of Per1 knockout-mice (Per1−/−-mice) to cerebral ischemia in vivo, we compared the autophagic machinery between primary hippocampal cultures from wild-type (WT)- and Per1−/−-mice, using the lipophilic macrolide antibiotic, Rapamycin to induce autophagy.